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a b s t r a c t

The dynamically equilibrium shapes of a uniform-density rotating mass of liquid (a ring) in the surface
layer of a quiescent stratified ocean are determined. The examination is carried out in a plane tangential to
the Earth, taking into account the vertical and horizontal projections of the angular velocity of its rotation.
Exact solutions of the equations of motion of an ideal incompressibe fluid are obtained, making it possible,
for a linearly stratified ocean, to determine the dynamic all equilibrium shape of the interfaces of water
masses and the free boundaries of cyclonic and antocyclonic rings. These shapes comprise second-order
surfaces inclined to the water level in the meridian plane, the type of surfaces depending on the governing
parameters of the problem. Expressions are obtained for the angles of inclination of the principal axes. For
small deviations from equilibrium, due to a difference in the gravitational forces and Archimedes forces,
motion of the ring occurs, governed by the inclination of the principal axes and the nature of change
(increase or reduction) in the average density of the ring, determined by the ratio of the rates of diffusion
of heat and salt. The displacement along the parallel comprises geostrophic motion, for the velocity of
which an analytical expression is obtained. The displacement along the meridian comprises motion over
an inclined plane. An analytical expression is given that relates the change in the depth of the centre
of mass of the ring to the velocity of motion along the meridian through the angle of inclination of the
principal axes of the ring. This explains the motion of both types of Gulf Stream ring to the south-west
and of the Oyasio ring to the north-east.

© 2010 Elsevier Ltd. All rights reserved.

Rings are near-surface mesoscale (horizontal dimensions ∼ 102 km) eddies formed as a result of the closure of loops of oceanic flows.1–3

The most well-known rings are the Gulf Stream and Kurosio. These currents pass along the interfaces of water masses that differ significantly
in temperature, salinity and density.

The density distributions of water over its depth on both sides of the Gulf Stream, plotted from available data,4 indicate that the water
density to the north-west of the Gulf Stream (cold water) and the water density to the south-east of the current (warm water) have initial
sections with a near-linear dependence on depth. Here, at identical depths, the density of the cold water is appreciably greater than the
density of the warm water. Thus, the density of warm water at a depth of about 600 m corresponds to the density of cold water at a depth
of 200 m. From depths of ∼1500 m, the densities of cold and warm water are similar and hardly change with depth.

The generation of rings by the looping of currents is the principal mechanism of transfer of water masses across frontal zones. Full-scale
observations indicate that, for the Gulf Stream and Kurosio, rings formed to the north of the currents are anticyclonic (rotating clockwise),
while rings to the south of the currents are cyclonic. The anticyclonic rings of the Gulf Stream have an isothermal heat core of significant
size that contains water of the Sargasso Sea, while cyclonic rings have a cold core of captured water to the north-west of the current.2,3

The water density in the region of the Gulf Stream depends chiefly on the temperature and depends very little on the salinity. Essential
for a long lifetime and for the direction of motion of the ring as a whole, in our opinion, is the difference in its average density from the
density of the surrounding liquid. This is determined by the core of lower density for the anticyclonic ring and of greater density for the
cyclonic ring. For simplicity, we will senseforth assume that the rings comprise rotating formations of uniform density.

Like submerged mesoscale intrusion eddies (‘lenses’),5,6 surface eddies (rings) can be regarded as natural fluid gyroscopes. A water
mass rotating relative to the Earth has an intrinsic angular momentum, the vector of which rotates together with the Earth (precesses), and
thus changes its orientation in absolute space. This precession is possible only under the action of a moment of external forces. In an ideal
model (without dissipation), the moment of forces ensuring this change in orientation of the angular momentum comprises the moment
of hydrostatic forces in the stratified ocean, acting on the dynamically equilibrium shape of the rotating liquid mass that is formed.
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Fig. 1.

Rings can exist for a fairly long time. The anticyclonic rings of the Gulf Stream live for several months, and the cyclonic rings for two or
more years. Gulf Stream rings of both types, moving slowly in the ocean, preferentially to the south-west, travel hundreds of kilometres.1,2,7

Their long life seems to be due, in particular, to the existence under actual conditions of a shape similar to the dynamically equilibrium shape
of the ideal model.8 Eddy formations not having a dynamically equilibrium shape, for example cyclonically rotating lenses of Mediterranean
water in the Atlantic, do not last long. Therefore, only rings having dynamically equilibrium shapes are considered below.

1. The hydrodynamic problem

A uniform-density rotating mass of an ideal incompressible fluid (a ring) is submerged in a stratified ocean that is quiescent relative
to the Earth rotating at an angular velocity �. In view of the smallness of the horizontal dimensions of the rings compared with the
radius of the Earth, our examination will be carried out in a plane layer, tangential to the Earth, of stratified ideal fluid in a plane-parallel
gravitational field. The dynamically equilibrium shape of the interface of water masses is constructed from the condition for the pressures
at the interface to be equal for the submerged part and for the pressure at the boundary of the ring with the atmosphere to be constant.
The latter condition and also the examination of cyclonic rings distinguish this paper from the investigation conducted earlier.6

We will introduce a Cartesian coordinate system. The z axis is directed upwards along a local vertical, the plane z = 0 lies at depth where
the density of the ocean is equal to the density of the ring. The x axis is directed to the east, and the y axis to the north.

To describe the steady motion, we will use the equations of hydrodynamics in the Gromeka–Lamb form in a coordinate system connected
to the rotating Earth

(1.1)

where V is the relative velocity of the liquid, � is the density, p is the pressure, � is the angular velocity of rotation of the Earth and g is the
acceleration due to gravity.

We will specify projections of the relative velocity of the liquid of the ring in the form

(1.2)

Such a velocity field corresponds to planar motions relative to the Earth in horizontal circles, the centres of which are positioned on the
line y = �z in the meridian plane with an angular velocity � identical for all horizontal sections. The point O of intersection of this line with
the plane z = 0 will be taken as the origin of coordinates. The meridional sections of anticyclonic and cyclonic rings, passing through point
O, are shown schematically in Figs. 1 and 2. Here, the dash-dot line shows the ocean surface, ABC shows the elevation (lowering) of the
ocean surface, C shows the top (bottom) point, z = H is the plane of the undisturbed ocean surface, the continuous horizontal lines show
the lines of intersection of the planes of rotation of the liquid with the meridional plane and the dashed line shows one of the principal
axes of the ellipsoid. The vectors of the angular velocity of rotation � are applied at the centres of the circular cross-sections, i.e., at points
of the line y = �z. They are directed vertically downwards in Fig. 1 and vertically upwards in Fig. 2.

By a direct check we can ascertain whether the equation of continuity is satisfied.
The equations of motion (1.1) take the form (�r is the ring density)

(1.3)
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Fig. 2.

The consistency condition for the first two equations of system (1.3) is satisfied automatically. From the requirements of consistency
of the first and third equations, and also the second and third equations, are following condition must be satisfied by the tangent of the
angle of inclination of the line of the centres of rotation to the vertical �

(1.4)

The projections of a relative eddy are (0, ��, 2�), the projections of a planetary eddy are (0, 2 �y = 2 � cos �, 2 �z = 2 � sin �; � is latitude),
and the projections of an absolute eddy are (0, 2 �y + ��, 2 �z + 2�).

It turned out that the parameter �, introduced as a characteristic of the geometrical location of the centres of the circular sections, has
a profound physical significance, namely, the slope of the vector of an absolute eddy to the local vertical is equal to �.

System (1.3) is used to determine the pressure in the ring. The pressure in the outer region is found from the equations of hydrostatics
for a stratified fluid. We will determine the shape of the interface of water masses from the condition for the pressures on it to be equal.

Integration of system of equations (1.3) gives the pressure distribution in the ring:

(1.5)

We determine the integration constant P from the condition of zero pressures of the atmosphere and ring on the circumference of inter-
section of the ring and the plane surface z = H of the quiescent ocean. The coordinates of point A (Figs. 2 and 3) are x = 0, y = �H + R, z = H,
where R is the radius of the indicated circumference. From Eq. (1.5) we have

(1.6)

and the expression for the pressure in the ring takes the form

(1.7)

On the free ring boundary, the pressure is zero, i.e., the upper boundary is the zero isobar, the coordinates of which are xu, yu, zu. From
relation (1.7) it follows that

(1.8)

For � /= 0, the surface (1.8) is an elliptical paraboloid. Three cases of positioning of the paraboloid are possible:

• Case 1 (Case 2): when � < 0 and � + 2 �z > 0 – a weak anticyclone, i.e. |�| < 2 �z (when � < 0 and � + 2 �z < 0, i.e. |�| > 2 �z – a strong
anticyclone); in this case, zu > H (zu < H), i.e. the points of the free boundary are positioned higher (lower) than the undisturbed surface
of the ocean – an elevation (depression);

• Case 3: when � > 0, a cyclone; in this case zu < H, i.e. the points of the free boundary are positioned below the undisturbed surface of the
ocean – a depression.

For known values of � and R, the quantity hu (1.6) defines the depth of the depression or the magnitude of the elevation. For rings,
the characteristic values R ∼ 50–100 km and the peripheral velocities �r ∼ 1 m/s, so that � ∼ 2 × 10−5 s−1. At latitudes of 30–35◦,
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where the Gulf Stream rings exist, �z ∼ 4 × 10−5 s−1, and therefore the depth of the depression is ∼25–45 cm for cyclonic rings and
the elevation is ∼15–35 cm for anticyclonic rings. The boundary case separating strong anticyclones from weak ones corresponds to
the condition |�| = 2 �z. Here, the peripheral velocity for the characteristic dimensions and latitudes of location of rings would be �r

≈ 2 m/s. It seems that strong anticyclonic rings in the ocean are not observed because the velocities in rings are lower than the value
indicated.

Observations from satellites indicate that anticyclonic rings have elevations with a height of the order of 10 cm or more,9 and cyclonic
rings have depressions with a depth of the same order. Thus, the model of a ring reflects and explains the results of these observations.

We will write the equation of an elliptical paraboloid (1.8) in canonical form in the variables xu, y′′
u, z′′

u:

A plus sign is taken for a cyclonic ring, and a minus sign for an anticyclonic ring. Quantitative estimates with the parameter values
indicated above give, for a cyclonic (anticyclonic) ring, a ≈ 110 (120) km, b ≈ 36 (27) km, arctg � ≈ 50◦ (63◦).

One of the principal axes of the paraboloid is parallel to the line y = �z, while the variables y′′
u and z′′

u are related to the variables yu and
zu by explicit relations.

The free surface in the form of an elliptical paraboloid is formed by circular streamlines for an anticyclonic ring or by circular annular
streamlines for a cyclonic ring in each horizontal section. Here, in an anticyclonic ring the elevation is displaced to the north of the centre
of mass of the ring, and in a cyclonic ring the depression is displaced, and the point of application of Archimedes forces turns out to be
different from the centre of mass of the ring. This creates around the centre of mass of the ring a moment of the pair of gravitational and
Archimedes forces, directed to the west for an anticyclonic ring and to the east for a cyclonic ring. This moment ensures precession of the
ring together with the rotating Earth.

When determining the interface of a ring and the water surrounding it, we will assume that the stratification of the density �f of the
surrounding water is linear in z in the region of occurrence of the ring, right up to the free surface:

The hydrostatic pressure pf in the water surrounding the ring is determined from the equations of hydrostatics.
At the interface of the water masses (x = xb, y = yb, z = zb) we have

(1.9)
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Equating the right-hand sides of expressions (1.7) and (1.9), we find the equation of the interface of the water masses

(1.10)

where

N2 is the square of the Väisälä–Brunt frequency for a stably stratified fluid d�f/dz < 0.
An analysis of the invariants of quadratic form on the left-hand side of Eq. (1.10) indicates that, in weak anticyclonic rings (� < 0,

|�| < 2 �z), the interface of the water masses is an ellipsoid. In cyclonic rings (� > 0) under the conditions

(1.11)

(1.12)

the interface is a parted hyperboloid. At the latitudes of formation of cyclonic rings of the Gulf Stream (≈30◦), with actual values of the
parameters (at average depths of ∼5 × 102 m) of the arrangement of the rings of the Gulf Stream, the density of the surrounding water �f
∼ 27 nominal units (in units of nominal density �t = [�t(T, s, pa)/�t(4, 0, pa) – 1] × 103, �t(4, 0, pa) = 1 g/cm3 is the density of water at 4 ◦C
and normal pressure pa, and s is the salinity), d�f/dz ∼ 1.3 × 10−3 nominal units/m,4 N2 ∼ 1.3 × 10−5 s−2, � ∼ 2 × 10−5 s−1, �z ≈ 3.6 × 10−5

s−1, R/H ∼ 102), the condition (1.11) is satisfied. The second condition of system (1.12) is satisfied with a large margin: the final term in the
brackets is three orders of magnitude greater than the previous terms.

The interface at � < 0 is an unparted hyperboloid (this can occur at high angular velocities of rotation, e.g. in a typhoon (see below in
this section)); when � = 0 it is a cone.

Bringing the quadratic form on the left-hand side of equation (1.10) to a canonical form in the variables y′
b

and z′
b

by rotating the axes
by an angle � about the tangent to the parallel (the x axis), we find

(1.13)

For actual parameters of rings, the final term in the denominator is five orders of magnitude greater than the first two. Therefore, tg 2� ≈
–4 �y�/N2. Since 4 �y|�| « N2, the angle � is small and

(1.14)

The exact expressions for the coefficients at x2
b
, y′2

b , z′2
b in canonical form in terms of the governing parameters are unwieldy, and we

will therefore use the fact that the angle � is small. Omitting the calculations, we will give the equation of the interface in the principal
axes with approximate values of the coefficients under the condition that R2 – N2H2�(2 �y�)−1 = � /= 0:

(1.15)

For an anticyclonic ring (� < 0), the exact equation of the interface is the equation of a triaxial ellipsoid, and the approximate interface
(1.15) is an ellipsoid of revolution, the principal axes of which are inclined in the meridian plane such that the southern edge of the ellipsoid
is submerged, declining by a small angle � from the interface. For actual parameters of the ring, � ≈ 40 seconds of arc.

For a cyclonic ring (� > 0), the exact equation of the interface is the equation of a triaxial hyperboloid, and the approximate surface
(1.15) is a hyperboloid of revolution, the principal axes of which are inclined to the meridian plane by a small angle � to the north. When
� < 0, the hyperboloid is a parted hyperboloid, and with the opposite inequality it is an unparted hyperboloid. For actual parameters of
cyclonic rings, the first inequality is satisfied, and the interface of the ring waters and the surrounding waters comprises the upper part of
the parted hyperboloid (Fig. 2).

When � = 0, the interface is a cone with its apex at the origin of coordinates.
Estimates of the actual combination of parameters in Eq. (1.15) indicate that rings in the form of unparted hyperboloids do not exist in

the ocean.
Unlike the ocean, in the atmosphere, for high angular velocities of the air (� > 2 �z), for example in a typhoon, the dynamically equilib-

rium shape may be an unparted hyperboloid. We will make a rough estimate of the parameters of a typhoon. The height of the troposphere,
where a typhoon propagates, is ∼10 km, the air density distribution can be assumed to be roughly linear with height, and N ∼ 10−2 s−1.2,10

We will assume the homogeneous core of the typhoon to be equal to the average density of the troposphere, which corresponds to a height
H ∼ 5 km. On the upper boundary of the troposphere, we will assume a pressure of zero. The angular velocity vectors of horizontal sections
are directed vertically upwards. Assuming that the peripheral velocities in a typhoon are ∼50 m/s, R ∼ 100 km, we obtain � ∼ 5 × 10−4

s−1, � ≈ 7 �, and inequality (1.11) changes sign. The second inequality of system (1.12) is satisfied with a large margin. Analysis indicates
that the boundary of the homogeneous core of the typhoon is an unparted hyperboloid, which corresponds to the schematic model of a
typhoon.11,12 However, this hyperboloid is non-axisymmetrical about the vertical. For the latitude � ∼ 25◦ with the above parameters of
the typhoon, the centre line of the circular sections is deflected from the vertical in the meridional plane by about 13◦ (Fig. 3). With these
simplifications and the indicated parameters of the typhoon, from the second equation of system (1.6), taking into account the fact that,
for the characteristic latitudes (∼25◦) at which hurricanes exist in the Atlantic, � � 2 �z, we obtain a depth of the isobar depression on
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the upper boundary of the typhoon hu ∼ �2R2/(2 g) ∼ 130 m. For hurricane Katrina, in which the velocity reached 315 km/h, the quantity
hu amounts to 390 m.

This solution is a three-dimensional non-axisymmetric solution. In each horizontal section, the velocities depend linearly on the radius,
i.e., the motion is that of a rigid body. However, on the whole this motion is not rigid-body motion. A rotating rigid body immersed in
an ocean on the rotating Earth, to ensure precession of its angular momentum in absolute space, would be inclined towards the local
water level. Here, the necessary moment of hydrostatic forces is created in the stratified medium, and the plane of rotation becomes
non-horizontal.6 To create the same moment of forces, the rotating fluid mass adapts by changing its shape, leaving the plane of rotation
horizontal and the angular momentum vertical. This is the essential difference in the mechanisms of adaptation to dynamic equilibrium
of a rotating rigid body and a rotating fluid mass.

Note that a posteriori estimation of the viscous effects indicate that the viscosity forces in the case considered are equal to zero due
to the linear dependence of the velocities on the coordinates, and the dissipative function has a single non-zero term 2 	�2�2 (	 is the
coefficient of dynamic viscosity). It is many orders of magnitude less than the magnitude of heat flow by heat conduction that occurs when
there is a temperature difference between the core of the ring and the surrounding fluid. This indicates the negligibly small influence of
viscosity in the region of the homogeneous core of the ring, which promotes its long life.

The solution of the problem of the equilibrium shape of a homogeneous rotating mass of liquid in a stratified rotating ocean with a free
boundary obtained above is exact within the framework of the formulation used, because, at the interface, through the pressure continuity
condition, two exact solutions of the equations of an ideal fluid are matched. This solution is discontinuous, as, at the interface of the fluids,
the density and the velocity tangential to the surface have a discontinuity. The question of the structure of the interface requires a separate
consideration.

Unlike to long-lived submerged mesoscale oceanic eddies (‘lenses’), having a closed dynamically equilibrium shape only in the case of
anticyclone rotation,5,6 near-surface mesoscale eddies of the same nature (rings) have dynamically equilibrium shapes also with cyclonic
rotation, by deformation of the free surface in the form of a depression, during which the forces governed by the pressure gradient are
directed inwards across the radius and balance the centrifugal forces of inertia and the Coriolis forces directed outwards.

The solutions obtained enable us to find expressions for the hydrostatic moments acting on rings and that arise on account of the
non-coincidence of the centres of application of the gravitational forces and Archimedes forces created by the stratified fluid forced out by
the ring. Unlike submerged lenses, which do not have a free surface, the asymmetrical deformation of the free surface that occurs in the
case of near-surface eddies, depending on the direction of rotation, intensifies the hydrostatic moments and may even become decisive.

2. Determination of the directions of motion of rings

It is well known that both anticyclonic and cyclonic rings of the Gulf Stream are displaced slowly to the south-west. Normally, the
western component of the velocity vector of translational motion is due to the influence of the so-called 
-effect (a linear approximation of
the dependence of the vertical component of the velocity of rotation of the Earth on the latitude).13 However, this kinematic effect cannot
be the cause of the velocity of the ring as a whole along the parallel and does not explain the eastern velocity component of the motion
of Oyasio anticyclonic eddies. The meridional velocity component of the motion of rings of the Gulf Stream has not been explained.13

Below, a dynamic mechanism is proposed that explains the motion of Gulf Stream rings towards the south-west and the motion of Oyasio
anticyclonic eddies towards the north-east.9

Thermochaline processes (heat and salt diffusion from the ring into the surrounding water, and in the opposite direction) lead to a
change in the average density of the ring, and, depending on the predominance of a particular type of diffusion, cause the submersion or
surfacing of the ring, and, more accurately, a change in depth of its centre of mass.

Accelerations of the centres of mass of the rings with respect to the Earth are very small (∼10−7 g). Therefore, when analysing the motion
of the centre of masses, the motion of the closed liquid formations is replaced by the motion of a solid inclined circular disc. This enables us
to use the well-developed hydrodynamic theory of added masses, taking into account the factors specific to geophysical hydrodynamics –
stratification of the medium and the rotation of the Earth. The problem reduces to investigating a system of ordinary differential equations,
the coefficients of which take into account these specific features of the problem. Here, from the hydrodynamic problem examined above,
use is made of the dimensions (the radius of the disc is much greater than its thickness) and slope � of the principal axes of inertia of such
a disc in the meridian plane. The motion of a solid in an ideal stratified liquid on the rotating Earth leads to trapping perturbations of the
liquid in a finite region limited by a radius of the order of the Rossby deformation radius (the Rossby radius) R∗ =

√
gH/f0, where Hr is

the characteristic vertical dimension (in the present case, the height of the ring) and f0 = 2 � sin � is the Coriolis parameter,10,14 and by a
height of the order of the Rossby height h* = f0L/N, where L is the characteristic horizontal dimension.14

Estimates of the added masses during motion of a body in a fluid depend on the flow scheme adopted. To estimate the added mass
during motion in a direction perpendicular to the plane of a circular disc of radius Rd, we will examine its motion along a vertical, to be
specific, downwards. The adopted flow scheme is depicted in Fig. 4. The disc is horizontal, because, to estimate the added mass, with the
motion examined, the small inclination of the disc to the water level is negligible. The velocity of motion of the disc along the vertical,
on account of the large added mass, because of the smallness of the motive force, equal to the difference in gravitational force and the
Archimedes forces (the densities of the ring and the surrounding water are similar), and because of the large force of resistance to vertical
motion, is very small (according to estimates, ∼10−6 m/s). Therefore, the surface of the ocean can be assumed to be undisturbed and can
be replaced by a solid wall. Water flowing out from beneath the disc travels to the sides of the disc. Under the action of Coriolis forces,
the velocity of particles of liquid flowing out from beneath the disc deviates from the radial direction, so that the radial velocities are
transformed into peripheral velocities at a finite radius of the order of the Rossby radius R*. The depth of penetration of the disturbances
is limited by a height of the order of the Rossby height h*.14 For the characteristic parameters of the rings of ocean currents, Hr ∼ 500 m,
2R = L ∼ 100 km, N ∼ 0.4 × 10−2 s−1 and � ≈ 30◦, we have R* ≈ 1000 km and h* ≈ 2000 m. In the scheme, we show the velocity w of motion
of the disc downwards along the vertical and the boundaries of the flow zone: the surface of the ocean (the dash-dot line), the depth to
the upper boundary of the disc hw, the side wall of the cylinder, which has a radius equal to the Rossby radius R*, and the lower boundary,
a distance of the Rossby height h* from the disc. The shaped arrows show the directions of the cross-section-average velocities of motion
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Fig. 4.

of the water. The added masses are estimated on the basis of an approximate calculation of the kinetic energy of masses of liquid with
the selected flow scheme. Here, since the Coriolis forces of inertia, which convert the radial motion of the liquid into rotating motion, do
not perform mechanical work, the kinetic energy of rotational motion is not taken into account. The subsequent discussion is based on
relations of equal flow rates. Stratification is not taken into account, as the difference in density from a constant is very small and has
practically no effect on estimates of the added masses.

For downward motion of the disc along the vertical at velocity w, the average velocity V1 of discharge from beneath the disc over the
Rossby height is determined from the condition of equality of the flow rates �R2

d
wdt = 2�Rdh∗V1dt:

(2.1)

Assuming the distribution of the horizontal component of the velocity of particles beneath the ring during such a discharge to be linear
over the radius, we find the kinetic energy T1 of particles of the liquid that flow out from beneath the ring (here and below, we assume
that the density � = 1):

Particles flowing out from beneath the disc “push apart” particles lying outside the zone beneath the ring at the same depth. We will
assume that the distribution of the radial components of the velocity of particles lying outside the zone beneath the ring decreases linearly
along the radius, such that these components vanish over a finite radius – the Rossby radius R*:

The corresponding part of the kinetic energy T2, using Eq. (2.1), is defined by the expression

From the condition of mass balance of the fluid flowing out from beneath the ring and flowing into the cylindrical region between the side
surfaces of the ring and cylinder with the Rossby radius (�R2

d
w = �(R2∗ − R2

d
)�v), we find the average vertical component of the velocity of

particles of the fluid

The same distribution of vertical velocities will exist on the upper boundary of this cylindrical region. The kinetic energy of the liquid
in the region indicated is

The flow rate of fluid flowing into the zone above the disc will be the same as that of liquid flowing out from the zone beneath it:
Q = �R2

d
w, but the thickness hw of the layer into which this fluid is flowing is much less than the thickness h* of the layer from which the

fluid flows out from beneath the disc and much less than the disc radius. We determine the velocity of flow �in into the upper zone from
the equality of flow rates 2�Rdhw�in = �R2

d
w. It is equal to �in = Rdw/(2hw). Since Rd � hw, then �in � w.
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In a ring, 0 < h < hw, Rd < r < R*, the fluid moves inwards along the radius. We will assume here that the distribution of the radial velocities
is linear along the radius with the conditions u(R*) = 0 and �(Rd) = −Rdw/(2hw). We obtain

The kinetic energy of the fluid in this region is as follows:

We will assume the distribution of the horizontal velocity components of fluid particles over the disc to be linear: �u = −rw/(2hw). The
kinetic energy corresponds to this motion:

We will find the ratios T̂i of the components Ti (i = 1, 2, . . ., 5) to the kinetic energy of the disc:

We obtain

The approximate equalities are written taking into account the condition R* � Rd.
It is obvious that the result depends strongly on the selected parameter hw. We will assume that it is equal to 30 m – this is the depth

of the upper layer of a real ocean where the density is almost constant. We obtain

(2.2)

i.e., the ratio of the overall kinetic energy of the liquid to the kinetic energy of the disc is ∼3 × 106. From this it follows that the added mass
of the liquid 33 during motion of the disc perpendicular to its plane is ∼3 × 106 times greater than its mass.

It is obvious that the parameters T̂4 and T̂5 increase without limit as hw → 0 and become decisive when estimating of the added mass
33.

To assess the added mass of the ring during its motion in the horizontal plane at a velocity Wh, we will model the motion of the ring as
motion in the midplane of a circular disc of radius Rd. We will assume that the motion of the liquid occurs only in the horizontal planes (its
stratification promotes this). On a circumference of Rossby radius R*, we assume that the radial velocities are zero. The projection of the
velocity onto the normal to the side surface of the disc is equal to Wh cos �, where � is the angle between the direction of velocity Wh and
the normal. We will assume the distribution of radial velocities of the liquid to be linear, such that on the Rossby radius this component of
the velocity is equal to zero:

(2.3)

The square of the average radial velocity over the length of section R*–Rd is equal to

(2.4)

Consider the sector of the disc with semi-aperture angle �. The entire volume of the water displaced by this sector in unit time (Hr is
the height of the disc)

flows out through segments of the side walls of the sector of length R*–Rd. This flow rate is equal to 2
〈

Wo

〉
Hr(R∗–Rd), where

〈
Wo

〉
is the

average velocity of discharge through the side surfaces. From the equality of the flow rates we find

(2.5)
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Using expression (2.4) and the square of expression (2.5), for the total kinetic energy of the liquid enclosed between the disc and a cylinder
of Rossby radius we obtain

(2.6)

(we used the relation R* � Rd), i.e., the kinetic energy of the liquid is roughly equal to the kinetic energy of the disc. From this it follows
that the associated mass of liquid during motion of the disc in its plane is roughly equal to the mass of the disc itself.

Estimates of the added masses show that 33 ∼ 3 × 106 M, and the added masses in other directions are roughly equal to the mass of
the body M:

(2.7)

Relations (2.7) refine the estimates of 11 and 22 given earlier.5

The approximate equations of motion of the centre of masses of such a disc,5 taking into account the refined estimates (2.7), have the
form

(2.8)

where � and  are the latitude and longitude of the centre of masses of the disc, h is the depth of immersion of the centre of mass, � is the
angle of inclination of the disc to the water level, m(h) is the mass of the forced out liquid and Re is the radius of the Earth.

In the approximation of the precession theory of gyroscopes,5,15 the first two equations of motion of the centre of mass of the disc,
obtained from the initial equations by truncation inertia terms and valid for long periods of time, take the form

(2.9)

For real parameters of rings |�33 cos �| � (2 M − 22) sin �, and therefore from the first equation we have the equation

(2.10)

which gives the relation between the vertical displacement of the ring and its horizontal motion along the meridian.
The seawater density � depends on the temperature T, salinity s and pressure p.1 The dependence on pressure is weak, and can be

ignored. Then

Thus, the sign of the quantity d�/dt depends on the ratio of the rates of double diffusion: heat and salt (thermochaline processes).
The direction and velocity of motion depend on whether the equilibrium position is higher or lower than the centre of mass of

the ring, and on the influence on its density of the diffusion of heat and salt. Curves of the dependence of the density of Gulf Stream
waters and neighbouring waters on the depth practically repeat the curves of the dependence of the temperature on depth (for example,
http://kingfish.coastal.edu/marine/gulfstream/p2a.htm), which gives grounds for assuming that the density of the neighbouring waters
depends chiefly on the temperature and depends very little on the salinity.

The diffusion of heat seems to affect the density of Gulf Stream rings more strongly than does the diffusion of salt, i.e., the following
inequality is satisfied

A cyclonic ring is cold, and, as a result of heating by radiative heat flow through the free surface and by surrounding warm waters, its
density seems to change more with the temperature than with the salinity, i.e.,

(2.11)

where To is the average temperature, and so is the average salinity of the ring. Its density is reduced, and it surfaces, more correctly, the
position of its centre of mass rises (dh/dt < 0). If this occurs non-quasi-statically (M ≈ m(h)) but with delay in relation to the reduction in its
density (M < m(h)), the centre of mass of the ring lies below the equilibrium position. A disc modelling a cyclonic ring is inclined to the north
(� < 0) in the meridian plane. On account of the large associated masses of the disc in a direction perpendicular to its plane, its velocity of
motion in the meridian plane is directed along the line of intersection of the meridian plane and the plane of the disc. The projection of the
velocity in the meridian plane, because of surfacing of the ring, has a component directed to the south and equal to the vertical projection
of the velocity of the disc divided by the tangent of the small angle of inclination of its plane to the water level (2.10).

For motion along the parallel, geostrophic balance occurs: the projection onto the tangential plane of the active force opposite to the
rolling force is directed towards the south and is balanced by the Coriolis force directed towards the north. Here, the ring has a velocity
component directed to the west, determined from the second equation of system (2.9).

http://kingfish.coastal.edu/marine/gulfstream/p2a.htm
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Taking relation (1.14) into account, we have (� /= 0)

(2.12)

With the values of the parameters

we obtain Re cos �(d/dt) ≈ − 1.8 cm/s. This is similar to the value of the western component of the velocity of motion of the cyclonic ring
(≈–2 cm/s) according to observational data.1,7

Thus, the resultant velocity vector of the motion of cyclonic rings of the Gulf Stream is directed to the south-west.
An anticyclonic ring of the Gulf Stream is warm, is cooled by the surrounding cold waters and, as a result of this cooling, under condition

(2.11), sinks (dh/dt > 0). The centre of mass of this ring lies above the equilibrium position. A disc modelling an anticyclonic ring in the
meridian plane is inclined to the south (� > 0).5 Like to the case of a cyclonic ring, the projection of the velocity of motion of the disc in the
meridian plane is directed along the line of intersection of the meridian plane and the plane of the disc. Because of the submersion of the
ring, this projection has a component directed to the south, which is equal to the vertical projection of the velocity of the ring divided by
the tangent of the small angle of inclination of the disc to the south (2.10). For projection of the velocity of motion of the ring along the
parallel, geostrophic balance occurs: the projection onto the tangential plane of the rolling force is directed to the south and is balanced
by the Coriolis force directed to the north. Here, the ring has a velocity component directed to the west. Thus, the resultant velocity vector
of horizontal motion of the anticyclonic ring of the Gulf Stream as a whole is directed to the south-west.

The anticyclonic eddies of Oyasio (the Japanese name for the Kuril current, which is a continuation of the Kamchatka current) are formed
at the point where Kurosio and Oyasio merge to the east of Japan. Having formed, these eddies can move against the Oyasio current to
the north-east, carrying the warm and saline intermediate Kurosio water right up to Bussol’ Bay and beyond.9 Its velocity of motion is
relatively low (∼1 cm/s). The Oyasio current is formed by the cold and softer waters of the eastern coast of the Kamchatka Peninsula (in
particular, by abundant precipitations, waters of thawing glaciers and fresh waters of the Kamchatka River) and by Pacific Ocean waters.
Waters of the Kamchatka River and Kamchatka current and of the Oyasio current itself are supplemented with warm fresh waters of the
numerous hot springs of the peninsula and the Kuril islands. This lowers the temperature contrast of the Oyasio anticyclonic eddies and
the waters of the current itself that surround them, and consequently reduces the diffusion of heat from the eddies to the surrounding
water. The diffusion of salt from the ring (dso/dt) < 0 seems to affect the average density of the ring more strongly than does the diffusion
of heat (dTo/dt < 0), i.e. the inverse inequality to (2.11) is satisfied.

From the equation of state it follows that d�r/dt < 0, and, from a certain instant, the inequality (M – m(h)) < 0 is satisfied, i.e., the Oyasio
anticyclonic eddy, unlike the sinking ring of the Gulf Stream, surfaces (dh/dt < 0). For an anticyclonic ring � > 0, and it follows from Eq. (2.10)
that d�/dt > 0, i.e., the meridional projection of the velocity of motion of the eddy as a whole is directed to the north, while it follows from
Eq. (2.12) that d/dt > 0, i.e., the component of its motion velocity along the parallel is directed to the east. Thus, in accordance with the
proposed model, the Oyasio anticyclonic eddy moves to the north-east, which agrees with data of observations.9

Thus, the original cause of the motion of rings of oceanic currents is not the 
-effect but the difference in the mean density of the ring
from the mean density of the surrounding water displaced by it, i.e., the difference in the gravitational force from the Archimedes force,
while the nature of motion, in particular its direction, is determined by the angle of inclination of the dynamic equilibrium shape and by
the change in the average density of the ring due to thermochaline processes.
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